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EXISTENCE THEOREMS FOR CLASSICAL
HETEROPHASE SYSTEMS

§.8ujan

A rigorous definition of a classical heterophase
system is proposed,and formulations of basic theo-—
rems on existence of heterophase systems, their
ergodic properties, and the possibility of gibbsian
description of such systems are given.

The investigation has been performed at the
Laboratory of Computing Techniques and Automation,
JINR.,

Teopemb cymecTBOBaHHA [JIA KilaCCHYECKHX
rerepodasHeX cHCTEM
II.llyan

llpennaraeTcsa cTporoe omnpeneneHHe KilacCHUECKOMH
reTepodasHoOl CHCTeMbl H IPHBOOATCA GOPMYIHMPDOBKH OC-
HOBHBIX TEOpEeM O CYmeCTBOBAHHH rerepodasHnX cHCTeM,
HX 3pProJHMYECKHX CBOHCTBAX H BO3MOKHOCTH IH6GCOB—
CKOT'O ONMHCAHHA TaKHX CHCTeM,

Pa6ora BemosnHeHa B Jla6opaTOPHH BHUHCIIHTELHOH
TeXHHKH H aBToMarusauuu OMIHU.

Let us recollect physical conclusions on the nature of
heterophase systems

(a) A heterophase system describes a certain "mixture"
of pure thermodynamical phases.

(b) The mixture in (a) is to be understood in the sense
that configurations typical of the heterophase system
consist of pieces of configurations typical of the
pure phases forming that system.

(¢) Though local fluctuations are possible, there exist
definite concentrations with which the pieces of con-
figurations in (b) are met in the infinite volume 1li-
mit,

(d) A heterophase system itself should be macroscopically
observable, in the usual sense of equilibrium statis-—
tical mechanics.

In this note we propose a rigorous definition of a hete-

rophase system and announce a number of existence theo-

rems for such systems. We suppose reader”s familiarity
with basic concepts of ergodic theory/3/ and the standard
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frame of equilibrium statistical mechanics of classical
(as opposed to quantum) infinite systems/4/.

Let T be a countable set. An S-valued random field
X=(Xt;tG"I) on T is a family of random variables defi-
ned on a common probability space ((Q, F,y), say) and tak-
ing values in S, which we assume to be a countable disc-
rete set. If T =z4 (the d-dimensional integer lattice;
d>1), we let P(5) (N(S), &S)) denote the set of all Bo-
rel probability measures on 8", which serve as distribu-
tions of all (of all translationally invariant, of all
translationally ergodic) random fields on T.

Given a set {¢W:icIlc 8T (I is a countable set
interpreted as the set indexing possible pure phases),we
say that the configuration ¢{() meets a configuration
¢<8T with concentration y; (0 <y; <1) if for any se-
quence of finite volumes V  with V *T we have

EmlV |7 eV, 8@ =0 VO =y, .

n-»00

Let ?={PW:ic1ic P, and let y={y;) ;g be

a probability vector with at least two non-zero entries
(in symbols, y @ I' ). Let supp P() denote the support
of the measure P, i ¢ 1. A measure P & %(S) is said to be
a heterophase system composed of the set 9 of pure pha-
ses with concentrations y,in symbols, P& H(?,y), if

N R(qS(i),yi))-—-l,

()

where R(¢My ) is the set of all configurations ¢ cst
described above.

Theorem 1. Let P ={P):icI} be the set of distribu—
tions of a jointly stationary class XM+ je1l of random
fields on T =2Z%. Then M(S) "H(?,y) # 6 for any yeT.

The proof uses the following construction of the hetero-
phase random field X =(X,; te T):

X, (o) = X(tzt (w))

0, wef, tcT, 1)
where Z =(Z,;t€T) is an I-valued random field on T, in-
dependent of the family {X() :ic¢ 1. In order to guaran-
tee given concentrations y €I, it is necessary to impose
the additional condition that Z & &{I). Of course, this
result does not say anything about propeérty (d) which is,
as is well known, related to ergodic properties of the
random field X. If we strengthen requirements on the
fields X{() ,we shall get a stronger conclusion as well:
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Theorem 2, Let P={PW:ig1} be the set of dis-
tributions of a jointly weak mixing set (XM :1 ¢ 1} of
random fields on T =Z9%, Then &()N H(?,9)# ¢ for any
v€T'. Suppose P& N(S) N H(%y) (see Theorem 1). Then
Theorem 2 can be obtained also without imposing the weak
mixing condition with the aid of the ergodic decomposi-
tion 78,5/ <f>p = [<t>PgP(dg).

Indeed, if P MEY K(?,y), then
PigcsT tPyc E® N HP,yl=1. (2)

Using the decomposition at infinity /8/ we can guarantee
even existence of random fields with trivial tails (of
course, they will not longer be translationally invariant):

Theorem 3. If M(S)N H(P,y)# 6 then there exists
a PGH(T,y) having trivial tail o-field. Hence, hetero-
phase systems with broken symmetry but possessing short-
range correlations’8/ exist.

In our subsequent considerations we shall suppose that
$=10,1}. All concepts used without special comments are
to be found in/8/

Theorem 4. Let P ={p®: ie 1} be the set of distri-
butions of a set of Markov fields {X:ic1} on T=29.
Let Z be an ] -valued random field on T, independent of
the family {X®: i€ I}  such that its distribution is
strictly positive on all finite cylinders in ST. Then the
random field X (cf.(1)) is Markgv. More generally, if
XM ig R —Markov and if $UDR(1).§_R<00, then X is R-
Markov .Using the well-known corresponsence between Markov
field and Gibbs fields we get from this the following re-
sult, Here, §(U) stands for the set of all Gibbs measures
to a potential u’%,

Theorem 5. Let ? ={PM:i¢ 1}, where PO cGu®),
and U is a nearest neighbour potential for each icl.
If the remaining hypotheses of Thm.4 are satisfied,then
there exists a nearest neighbour potential U such that
P= dist(X) (cf. (1); dist(X) will denote the distribu-
tion of X) is in g(U)-
Let Ext§(U) denote the set of all extreme points of the
convex set G(U). It is commonly accepted (on the base of
correlation properties) that P< Ext§(U) may serve as
a completely satisfactory description of "macroscopic
observability", Consequently, it is of interest to have
the following result:
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Theorem 6. Let {PM :ic1} , xW:ic1t , Z,and X
be as in Theorems 4 and 5. Furthermore, suppose that Z
is mixing and PM ¢ Ext §(UM ) for each i< I. Then there
exists a nearest neighbour potential U such that P =
= dist(X) € Ext §(U). In particular, for any y €¢I' there
is a potential U such that ExtG§Un H(?, v)# 4.

Theorems 1 through 6 show there exist heterophase systems

which correspond to

(1) a symmetry preserving phase transition (i.e., non-
uniqueness of the infinite-volume Gibbs measure for
a given potential such that all these measures obey
the same symmetry group),

as well as to

(b) phase transition as a spontaneous symmetry breaking
(i.e., existence of Gibbs measures with a given sym-
metry group as well as ones having lower (broken)
symmetry) .

On the other hand, they are merely existence results, and

an explicit calculation of the corresponding "heterophase'

potentials is not possible using these theorems.

Let us consider the model of Gibbs fields on infinite
trees /87, Its advantage is that one can calculate a phase
transition directly by giving the distributions of diffe-
rent pure phases. We consider again $=1{0,1} and T =T,,
where Tg is the infinite tree such that each of its
sites coincides with exactly three branches, If t is
a given site, we let t;, ty, tg generically denote its
neighbouring sites. A Markov random field (MRF) on T3
has its conditional probabilities uniquely determined by
the vector a=(a0,a1,a2,a3), where

ak=P[Xt=1||!j:th=U|=k], 0<k<3. (3)

If U is a homogeneous nearest neighbour potential, i.e.,

if U(s,t) =vy for s=t, U(s,t) = v, if s, t are neigh-

bours, and U(s,t)=0 otherwise, then any P € §(U) will pos-
sess conditional probabilities

v ~1
ak=[1+exp(—§°-+kv1)] , 0<k<3.

As is shown in/®7/ , conversely, knowing (3) we can re-
construct the potential U as well as find explicit ex-
pressions for finite-dimensional distributions of the
corresponding random fields.

If vy= 0, v,>0 then | (U)|>i, i.e., a phase transi-
tion occurs, Let ? ={P() ,Pp(® }  where PV, PCkEXJU),
let X(D, x®  denote the corresponding random fields.

We consider the random field X defined by the construc-
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tion (1), where Z=(Z;t€Tg)is a family of i.i.d. ran—-
dom variables such that P[Z;=0] =y; =1-P[Z, =1], te Tg .
Then P =dist(X) « H(P,y). It is easy to see that X is
again a MRF on T3 and it is possible (although rather
cumbersome) to calculate its parameters a (see (3)) as
functions of the "old" parameters « and of y={g,1-y,).
Consequently, we can calculate the "heterophase" poten-
tial as well: U = U(vy, 4). We have the following surpri-
sing result:

Theorem /. There exists a constant V*>0 such that
for_any 0< Vi<v* _there is a ¥=(y;,1 ~y ()€ ' for which
IGW)| =1, where U=U(vy,y;). In orher words, the hete-
rophase potential does not admit a phase transition.

The complete proofs of all these results together with
an analysis of more realistic model systems will appear
elsewhere.

In conclusion, the author expresses his sincere thanks
to A,S.Shumovsky for suggesting the problem and for many
stimulating discussions. Useful conversations with
H.-0.Georgii and E.Presutti are also gratefully acknow-
ledged.
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